ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kenji Tanaka, Clive Michael, Masayuki Yokoyama, Osamu Yamagishi, Kazuo Kawahata, Tokihiko Tokuzawa, Mamoru Shohji, Hiroshi Yamada, Jyunichi Miyazawa, Shigeru Morita, Katsumi Ida, Mikiro Yoshinuma, Kazumichi Narihara, Ichihiro Yamada, Shigeru Inagaki, LHD Experimental Group, Leonid Vyacheslavov, Andrei Sanin, Sadayoshi Murakami, Arimitsu Wakasa
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 97-111
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1291
Articles are hosted by Taylor and Francis Online.
The characteristics of particle transport in three different magnetic configurations are studied from density modulation experiments in the Large Helical Device (LHD). These three configurations are represented as different magnetic axis positions (Rax) of the vacuum field. Experiments were carried out in a range of different heating powers for each configuration with almost constant density. The experimental values of particle diffusion coefficients (D) and particle convection velocities (V) are compared with neoclassical estimates. The value of D is found to be anomalously large compared to neoclassical values in both the core and edge in all configurations. At low collisionality, this anomaly tends downward. The core convection velocities are comparable with neoclassical estimates. In more-outward-shifted configurations, particle transport is enhanced. The electron temperature and electron temperature gradient are the determinate parameters for D and V, respectively, in each configuration. The effective helical ripple is one of the important parameters for particle transport in the LHD; however, other hidden parameters exist. The role of fluctuations in particle transport is investigated from turbulence measurements using a two-dimensional phase contrast interferometer. Three kinds of fluctuation having different locations, propagation direction, and peak wave number are observed. One of these, which exists in the outermost edge region and propagates in the ion diamagnetic direction in the laboratory frame, plays a possible role in edge anomalous diffusion. The amplitudes of ion diamagnetic fluctuation components are compared with the linear growth rate of the ion temperature gradient mode.