ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
N. Nakajima, S. R. Hudson, C. C. Hegna
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 79-91
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1289
Articles are hosted by Taylor and Francis Online.
In the three-dimensional magnetic confinement configurations, the results of local mode analyses of the ballooning modes in the covering space (quasi modes) cannot be directly connected by superposition to the global mode analyses of the ballooning modes in the configuration space (physical modes) because of the lack of symmetry. However, a qualitative relation has been established to connect the quasi modes to physical modes in planar axis heliotron configurations with a large Shafranov shift. This relation is based on the topological structure of the level surfaces of the eigenvalues of the quasi modes. High-beta magnetohydrodynamic equilibria in the inward-shifted Large Helical Device configuration are examined. It is shown that the core plasma stays in the second stability, and the peripheral plasma stays near the marginally stable state against ballooning modes.