ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Takahashi, H. Utoh, S. Kitajima, M. Isobe, C. Suzuki, M. Takeuchi, R. Ikeda, Y. Tanaka, M. Yokoyama, K. Toi, S. Okamura, M. Sasao
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 54-60
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1287
Articles are hosted by Taylor and Francis Online.
Electrode biasing experiments under electrode current control were carried out in the Tohoku University Heliac and the Compact Helical System to examine the role of an ion viscosity on a transition to a high-confinement regime and to investigate the dependence of the ion viscosity on magnetic structure. Observations included (a) an increase of electron density, (b) an increase of electron stored energy, (c) a formation of the steep gradient of electron density, and (d) a formation of a negative electric field in both devices during electrode biasing negatively. The dependence of the ion viscosity normalized by the ion pressure on the poloidal Mach number qualitatively agreed with the neoclassical theory based on the Shaing model. This result supported the transition mechanism of the neoclassical theory based on ion viscosity, which advocates that the transition to a high-confinement mode is the bifurcation phenomenon resulting from the existence of local maximum in ion viscosity.