ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Okamura, T. Akiyama, A. Fujisawa, K. Ida, H. Iguchi, M. Isobe, S. Kado, T. Minami, K. Nagaoka, K. Nakamura, S. Nishimura, K. Matsuoka, H. Matsushita, H. Nakano, S. Ohshima, T. Oishi, A. Shimizu, C. Suzuki, C. Takahashi, K. Toi, Y. Yoshimura, M. Yoshinuma, CHS Group
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 46-53
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1286
Articles are hosted by Taylor and Francis Online.
Various types of transport barriers have been studied in the Compact Helical System. In addition to the neoclassical transport barrier, the edge transport barrier (H-mode) was studied using the high-power heating of two coinjection neutral beam injections. A density pedestal is formed after the transition that is indicated by the drop of H emission signal. The heating power threshold for the transition was investigated by varying the heating power. Its dependence on the density and the magnetic field is close to the H-mode scaling obtained in tokamaks. The dependence of the power threshold on the magnetic field configuration was also found. Local density fluctuation was measured with beam emission spectroscopy, which observed harmonic oscillations appearing after the density pedestal was formed. For L-mode plasma, long-distance coherence of the potential fluctuations were measured with two sets of heavy ion beam probes (HIBPs). Those coherent modes are supposed to be the geodesic acoustic mode part of zonal flow. Turbulent particle flux was also measured with HIBP, and its change with internal transport barrier formation is demonstrated.