ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
A. V. Melnikov, A. Alonso, E. Ascasíbar, R. Balbin, A. A. Chmyga, Yu. N. Dnestrovskij, L. G. Eliseev, T. Estrada, J. M. Fontdecaba, C. Fuentes, J. Guasp, J. Herranz, C. Hidalgo, A. D. Komarov, A. S. Kozachek, L. I. Krupnik, M. Liniers, S. E. Lysenko, K. J. McCarthy, M. A. Ochando, I. Pastor, J. L. De Pablos, M. A. Pedrosa, S. V. Perfilov, S. Ya. Petrov, V. I. Tereshin, TJ-II Team
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 31-37
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1284
Articles are hosted by Taylor and Francis Online.
The heavy ion beam probe diagnostic is used in the TJ-II stellarator to study directly the plasma electric potential with good spatial (up to 1 cm) and temporal (up to 2 s) resolution. Singly charged heavy ions, Cs+, with energies of up to 125 keV are used to probe the plasma column from the edge to the core. Both electron cyclotron resonance heating (ECRH) and neutral beam injection (NBI)-heated plasmas (PECRH = 200 to 400 kW, PNBI = 200 to 400 kW, ENBI = 28 keV) have been studied.Low-density ECRH [[over bar]n = (0.5 to 1.1) × 1019 m-3] plasmas in TJ-II are characterized by positive plasma potential on the order of 1000 to 400 V. A negative electric potential appears at the edge when the line-averaged density exceeds 0.5 × 1019 m-3. Further density rises are accompanied by a decrease in the core plasma potential, which becomes fully negative for plasma densities [over bar]n 1.5 × 1019 m-3. The NBI plasmas are characterized by a negative electric potential across the whole plasma cross section from the core to the edge. In this case, the absolute value of the central potential is on the order of -500 V. These results show a clear link between plasma potential and density in the TJ-II stellarator.