ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. V. Melnikov, A. Alonso, E. Ascasíbar, R. Balbin, A. A. Chmyga, Yu. N. Dnestrovskij, L. G. Eliseev, T. Estrada, J. M. Fontdecaba, C. Fuentes, J. Guasp, J. Herranz, C. Hidalgo, A. D. Komarov, A. S. Kozachek, L. I. Krupnik, M. Liniers, S. E. Lysenko, K. J. McCarthy, M. A. Ochando, I. Pastor, J. L. De Pablos, M. A. Pedrosa, S. V. Perfilov, S. Ya. Petrov, V. I. Tereshin, TJ-II Team
Fusion Science and Technology | Volume 51 | Number 1 | January 2007 | Pages 31-37
Technical Paper | Stellarators | doi.org/10.13182/FST07-A1284
Articles are hosted by Taylor and Francis Online.
The heavy ion beam probe diagnostic is used in the TJ-II stellarator to study directly the plasma electric potential with good spatial (up to 1 cm) and temporal (up to 2 s) resolution. Singly charged heavy ions, Cs+, with energies of up to 125 keV are used to probe the plasma column from the edge to the core. Both electron cyclotron resonance heating (ECRH) and neutral beam injection (NBI)-heated plasmas (PECRH = 200 to 400 kW, PNBI = 200 to 400 kW, ENBI = 28 keV) have been studied.Low-density ECRH [[over bar]n = (0.5 to 1.1) × 1019 m-3] plasmas in TJ-II are characterized by positive plasma potential on the order of 1000 to 400 V. A negative electric potential appears at the edge when the line-averaged density exceeds 0.5 × 1019 m-3. Further density rises are accompanied by a decrease in the core plasma potential, which becomes fully negative for plasma densities [over bar]n 1.5 × 1019 m-3. The NBI plasmas are characterized by a negative electric potential across the whole plasma cross section from the core to the edge. In this case, the absolute value of the central potential is on the order of -500 V. These results show a clear link between plasma potential and density in the TJ-II stellarator.