ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
B. K. Shukla, K. Sathyanarayana, D. Bora, Sanjay V. Kulkarni, Sampa Gangopadhyay, Y. S. S. Srinivas, P. L. Khilar, Mahesh Kushwah, R. G. Trivedi, S. Rajashree, Barnali Pal, Anil Bhardwaj, D. Rathi, B. R. Kadia, Ashish Patel, Chetan Virani, Harsida Patel, H. M. Jadav, K. G. Parmar, P. Shah, A. R. Makwana, Sunil Dani, P. Kirit, M. Harsha, J. Soni, RF Group
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 551-560
Technical Note | doi.org/10.13182/FST06-A1279
Articles are hosted by Taylor and Francis Online.
An electron cyclotron resonance heating system is commissioned on Aditya tokamak to carry out pre-ionization, start-up, and heating experiments. A high-power microwave source (gyrotron), capable of delivering 200-kW cw power at 28 ± 0.1 GHz, is commissioned successfully using a water dummy load for pulsed operation. The output mode of the gyrotron is TE02. The output power of the gyrotron is measured using microwave probe couplers, a spectrum analyzer, and calorimetric techniques. A hardwired interlock operates a rail-gap-based crowbar system in less than 10 s under fault condition and protects the gyrotron. The rail-gap crowbar operation has been qualified with the high-voltage power supply by performing a 10-J wire-burn test prior to energizing the gyrotron.A transmission line consisting of matching optic units, dc break, polarizer, miter bend, and corrugated waveguides terminates with a boron nitride window. The total attenuation in the line is measured to be less than 1.1 dB. Based on quasi-optical theory, a beam launcher is designed, fabricated, and tested for ultrahigh-vacuum compatibility prior to commissioning on tokamak.After successful operation of the gyrotron on the dummy load, the gyrotron output has been coupled to the ADITYA tokamak, and successful breakdown of neutral gas is observed without assistance from an ohmic transformer.