ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
H. Li, J. L. Chen, J. G. Li
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 546-550
Technical Note | doi.org/10.13182/FST06-A1278
Articles are hosted by Taylor and Francis Online.
In the next generation of fusion device in China, e.g., the Experimental Advanced Superconducting Tokamak (EAST), the divertor target will be exposed to high heat loads up to 5 MW/m2 for about 1000 s. An actively water-cooled target plate element with flat tungsten tile armored on CuCrZr heat sink was designed for EAST. A two-dimensional finite element method (FEM) code was used to analyze its thermal and mechanical properties under high heat flux of 10 MW/m2 for the selection of an appropriate cross section. To meet the integrated requirements of temperature and stress in the target element, twisted tapes have to be inserted into the cooling channels to strengthen the heat transfer efficiency, and a tungsten armor thickness of 4 mm and a distance of 2 mm from the interface to the vertex of the cooling channel were ultimately selected. The thermal and mechanical properties of two kinds of tungsten armor (sintered and plasma sprayed) were also analyzed and discussed in the FEM calculations. The designed structure can be used under the 5 MW/m2 heat load expected for normal operation of EAST device, but it would suffer from cracks/failure danger under higher heat load, up to 10 MW/m2.