ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
H. Li, J. L. Chen, J. G. Li
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 546-550
Technical Note | doi.org/10.13182/FST06-A1278
Articles are hosted by Taylor and Francis Online.
In the next generation of fusion device in China, e.g., the Experimental Advanced Superconducting Tokamak (EAST), the divertor target will be exposed to high heat loads up to 5 MW/m2 for about 1000 s. An actively water-cooled target plate element with flat tungsten tile armored on CuCrZr heat sink was designed for EAST. A two-dimensional finite element method (FEM) code was used to analyze its thermal and mechanical properties under high heat flux of 10 MW/m2 for the selection of an appropriate cross section. To meet the integrated requirements of temperature and stress in the target element, twisted tapes have to be inserted into the cooling channels to strengthen the heat transfer efficiency, and a tungsten armor thickness of 4 mm and a distance of 2 mm from the interface to the vertex of the cooling channel were ultimately selected. The thermal and mechanical properties of two kinds of tungsten armor (sintered and plasma sprayed) were also analyzed and discussed in the FEM calculations. The designed structure can be used under the 5 MW/m2 heat load expected for normal operation of EAST device, but it would suffer from cracks/failure danger under higher heat load, up to 10 MW/m2.