ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Masabumi Nishikawa, Kazuya Furuichi, Hiroki Takata
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 521-527
Technical Paper | doi.org/10.13182/FST06-A1275
Articles are hosted by Taylor and Francis Online.
Concrete walls play the role not only of the structural material but also of the final barrier of a multiconfinement system of tritium in a fusion reactor or a tritium-handling facility. Therefore, it is required that the behavior of tritium in the concrete materials be clarified to certify the radiation safety of a fusion reactor. The diffusion coefficient of hydrogen in cement paste is obtained by using the permeation experiment in this study, and it is found that the diffusion coefficient of hydrogen in the cement paste is only one order magnitude smaller than the diffusion coefficient of hydrogen in air. Calculation using the diffusion coefficient obtained in this study indicates that the gaseous tritium, HT or T2, can permeate rather rapidly to the outside through the concrete wall of a tritium-handling facility. This calculation implies that installation of a tritium recovery system with proper decontamination performance is required to minimize the tritium transfer to the outer environment.