ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Dongxun Zhang, Teruya Tanaka, Takeo Muroga
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1576-1579
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12735
Articles are hosted by Taylor and Francis Online.
Metal organic decomposition (MOD) Er2O3 coating for tritium permeation barrier was fabricated on two ferritic steels with dip-coating method. The interfacial layers, which were formed by the oxidation of the substrates, were found under the coating with different compositions and thickness according to the elemental depth profile of XPS. Their formations depended on the substrate materials (JLF-1: Fe-9Cr-2W based reduced activation ferritic/martensitic steel; SUS430: 18Cr based commercial ferritic steel) and the baking atmosphere (air or Ar). The main reason could be selective oxidation of main elements in the substrates at high temperature with the different baking atmosphere. For the coated JLF-1 samples, the surface smoothness and the hydrogen barrier performance of Er2O3 coatings were improved significantly by changing the baking atmosphere from air to Ar. The composition change in the oxidized interfacial layer from iron oxide to chromium oxide may be the reason for the improved surface smoothness and permeation barrier performance.