ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
P. W. Humrickhouse, P. Calderoni, B. J. Merrill
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1564-1567
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12732
Articles are hosted by Taylor and Francis Online.
A number of additions have been made to the computational fluid dynamics (CFD) code Fluent in order to model hydrogen permeation. In addition to fluid dynamics, Fluent solves for heat transfer in coupled solid and fluid regions, and solves advection-diffusion equations for scalar quantities such as hydrogen concentration. The latter have been modified with additional code to satisfy Sievert's Law at solid-fluid interfaces and allow for temperature dependent diffusivity and permeability.The method has been employed to model the Tritium Heat Exchanger (THX) experiment at INL, which investigates hydrogen permeation in helium and candidate structural materials for high temperature gas reactor heat exchangers. The Arrhenius law parameters used in Fluent for Inconel 617 are initially determined via a simplified analytical method, and the resulting model predictions compare favorably with experiment data.