ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
M. Yoshida et al.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1560-1563
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12731
Articles are hosted by Taylor and Francis Online.
T retention and its depth profile in the graphite tiles used for first wall of JT-60U have been measured by a tritium imaging plate technique and a full combustion method. T was found only limited depth beneath the plasma facing surface and little in both the surface region shallow than 1 m and in bulk more than 1mm in depth. Although most of T produced by DD reactions are thermalized and neutralized in plasma and impinge on the plasma facing surface and penetrate into the inner surface, they are isotopically replaced by subsequently incoming D. Only some of high energy T escaping from plasma are directly implanted beneath the surface and retained escaping from the isotopic replacement until attainment of a saturation concentration.