ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Takenaga, H. Kubo, Y. Kamada, Y. Miura, Y. Kishimoto, T. Ozeki
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 503-507
Technical Paper | doi.org/10.13182/FST06-A1273
Articles are hosted by Taylor and Francis Online.
Accumulation of impurity injected for reduction of heat load to the divertor plates was of great concern with a peaked density profile. Applicability of impurity injection to a burning plasma with a peaked density profile was investigated for various impurity accumulation levels using the A-SSTR2 design parameters. Impurity transport analysis indicated that the argon density profile twice as peaked as the electron density profile can yield acceptable radiation profile even with a peaked density profile. The required confinement improvement factor over the IPB98(y,2) scaling slightly increased from 1.4 with the flat density profile to 1.5 with the peaked electron density profile at ne(r/a = 0)/ne(r/a = 0.7) ~ 3. When the argon density profile was determined by neoclassical transport, the radiation loss in the core plasma intensively increased with the peaked density profile, which requires higher confinement enhancement factor of 1.9 at ne(r/a = 0)/ne(r/a = 0.7) ~ 3.