ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Tsukatani et al.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1543-1547
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12727
Articles are hosted by Taylor and Francis Online.
In this research, thermal desorption characteristics of deuterium retained at trap sites of W created by irradiation of 300 keV hydrogen ions have been studied. With 10 hours of annealing, about 85% of deuterium was desorbed at temperatures of 300 °C and 350 °C, while deuterium desorption at 250 °C was about 60%. To estimate trapping energy of trap sites in this damaged W, TMAP simulation was performed. The result shows that the trapping energy of 1.29eV well accounted for the result of 250 °C annealing. In view that in the literature the vacancy trapping energy of hydrogen in tungsten was estimated to be close to 1.43 eV and the sensitivity analysis has given an uncertainty for the trapping energy of the order of 0.1 eV, it appears that the dominant trapping site type in the investigated damaged tungsten consists of vacancies.