ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Otsuka, M. Shimada, T. Tanabe, J. P. Sharpe
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1539-1542
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12726
Articles are hosted by Taylor and Francis Online.
In order to understand behavior of tritium (T) on surface and in bulk of metals exposed to T plasma, both surface activities and depth profiles of T were periodically observed by a tritium imaging plate technique during storage in air at room temperature (RT) for over 1 year. In the T depth profiles, T localized within a depth of sub mm from the surface was clearly distinguished from T in the bulk. The former was attributed to strong trapping by some defects produced by the plasma exposure and remained quite longer during the storage, while the latter was released from the surfaces by diffusion. T surface activity measured on the plasma-exposed surface changed in a complicated way with time due to removal of T by isotopic replacement with H in ubiquitous H2O and T supply from the bulk in the course of the diffusional release.