ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Y. Nobuta et al.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1535-1538
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12725
Articles are hosted by Taylor and Francis Online.
Tritium retention in plasma facing materials is a primary issue for ITER and next step fusion devices, since it greatly affects its safety and operational schedule. In the ITER, carbon and tungsten are used as divertor materials. In the present study, co-deposited carbon film, tungsten and isotropic graphite were exposed to tritium gas, and then the amount of absorbed tritium was investigated. During the tritium exposure, the partial pressure of tritium gas was kept at 10 Pa. The sample temperature was kept a constant in the range from RT to 573 K. The amounts of absorbed tritium were evaluated by -ray-induced X-ray spectrometry (BIXS). The amounts of absorbed tritium in co-deposited carbon films were one or two orders of magnitude larger than that of polycrystalline tungsten and isotropic graphite. The amount of absorbed tritium for co-deposited carbon film with a high volume density (1.53 g/cm3) was several times larger than that of the film with a low volume density (1.13 g/cm3). The amount of absorbed tritium increased with the temperature. These results indicate that co-deposited carbon films can absorb much larger amount of tritium than tungsten and graphite, and carbon film density affects the amount of absorbed tritium.