ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Yong-Su Na, A. C. C. Sips, W. Treutterer, ASDEX Upgrade Team
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 490-502
Technical Paper | doi.org/10.13182/FST06-A1272
Articles are hosted by Taylor and Francis Online.
Control of the shape of the current density profile is essential to improve the confinement and the stability in the plasma, particularly for advanced tokamak scenarios with internal transport barriers. For real-time control of the current density profile, it is necessary to identify a model that describes the time evolution of the current density profile when additional current is driven by external current drive tools. This paper focuses on the identification of such models in ASDEX Upgrade. Neutral beam injection is planned as a tool to control the current density profile in ASDEX Upgrade. The possibility of modifying the current density profile using neutral beam injection is investigated by the ASTRA code simulations using the Weiland transport model. It is difficult to derive a physics-based model for the current profile modification with neutral beam injection because it is nonlinear and multivariable. Therefore, a numerical model, a state-space model suited for systems with many input and output signals, is employed for the modeling. The matrices of the state-space model are estimated using a database by a standard prediction error method that minimizes the difference between the model output and the reference output. The database consists of a set of perturbed input signals and simulated output signals. The input signals are the variations of neutral beam power from different beam sources, and the output signals are the variations of the total plasma pressure and the current density profile. The ASTRA code with the Weiland transport model is used for the simulations to create the database since experimental data are currently not available at ASDEX Upgrade. A test of identified models is carried out using another database, also produced by ASTRA, applying a step response pattern to the input signals. It is found that the models obtained predict the output of this database with high accuracies. It is possible to apply the approach developed here to other actuators in a similar way for the current profile control in existing and future experiments.