ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yong-Su Na, A. C. C. Sips, W. Treutterer, ASDEX Upgrade Team
Fusion Science and Technology | Volume 50 | Number 4 | November 2006 | Pages 490-502
Technical Paper | doi.org/10.13182/FST06-A1272
Articles are hosted by Taylor and Francis Online.
Control of the shape of the current density profile is essential to improve the confinement and the stability in the plasma, particularly for advanced tokamak scenarios with internal transport barriers. For real-time control of the current density profile, it is necessary to identify a model that describes the time evolution of the current density profile when additional current is driven by external current drive tools. This paper focuses on the identification of such models in ASDEX Upgrade. Neutral beam injection is planned as a tool to control the current density profile in ASDEX Upgrade. The possibility of modifying the current density profile using neutral beam injection is investigated by the ASTRA code simulations using the Weiland transport model. It is difficult to derive a physics-based model for the current profile modification with neutral beam injection because it is nonlinear and multivariable. Therefore, a numerical model, a state-space model suited for systems with many input and output signals, is employed for the modeling. The matrices of the state-space model are estimated using a database by a standard prediction error method that minimizes the difference between the model output and the reference output. The database consists of a set of perturbed input signals and simulated output signals. The input signals are the variations of neutral beam power from different beam sources, and the output signals are the variations of the total plasma pressure and the current density profile. The ASTRA code with the Weiland transport model is used for the simulations to create the database since experimental data are currently not available at ASDEX Upgrade. A test of identified models is carried out using another database, also produced by ASTRA, applying a step response pattern to the input signals. It is found that the models obtained predict the output of this database with high accuracies. It is possible to apply the approach developed here to other actuators in a similar way for the current profile control in existing and future experiments.