ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. Maisonneuve, T. Oda, S. Tanaka
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1507-1510
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12718
Articles are hosted by Taylor and Francis Online.
The stability of hydrogen atoms trapped in vacancy clusters of a bcc iron structure is investigated by molecular statics calculations of the hydrogen binding energy to these clusters. The configurations having a minimum potential energy are obtained from the relaxation of a large number of different initial atomic configurations. Calculations of hydrogen binding energy to a mono-vacancy illustrate a relatively large gain of energy in trapping up to two hydrogen atoms in a monovacancy and the increasing difficulty to trap additional atoms due to hydrogen mutual repulsion. Comparison with ab-initio reference calculations of the hydrogen binding energy shows good agreement for up to three trapped hydrogen atoms. Based on the calculations conducted on the most stable vacancy-hydrogen complexes containing two to six vacancies, the maximum capacity of hydrogen atoms per vacancy was found to decrease with the size of vacancy cluster. The calculations of hydrogen binding energies to these clusters show that trapping two hydrogen atoms per vacancy is still a particularly favorable process for vacancy clusters.