ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Masashi Shimada, T. Otsuka, R. J. Pawelko, P. Calderoni, J. P. Sharpe
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1495-1498
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12715
Articles are hosted by Taylor and Francis Online.
Tritium retention in plasma-facing components influences the design, operation, and lifetime of fusion devices such as ITER. Most of the retention studies were carried out with the use of either hydrogen or deuterium. Tritium Plasma Experiment is a unique linear plasma device that can handle radioactive fusion fuel of tritium, toxic material of beryllium, and neutron-irradiated material. A tritium depth profiling method up to mm range was developed using a tritium imaging plate and a diamond wire saw. A series of tritium experiments (T2/D2 ratio: 0.2 and 0.5 %) was performed to investigate tritium depth profiling in bulk tungsten, and the results shows that tritium is migrated into bulk tungsten up to mm range.