ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Matsuyama, K. Shinmura, Z. Chen, Y. Torikai
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1491-1494
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12714
Articles are hosted by Taylor and Francis Online.
Solubility of tritium in Cu-Be(2 mass%) alloy was determined by means of measurement of a tritium depth profile in the alloy. Tritium exposure to the samples was conducted under the following conditions: pressure, 0.4 to 2.6 kPa; temperature, 350 to 450°C; exposure time, 4 to 11 hours. Tritium depth profiles were obtained by chemical etching after the exposure. Remarkably high tritium concentration appeared in surface layers within 0.5 m, whereas almost constant concentration was observed from 10 m to the bulk. It was found, therefore, that surface tritium should be omitted in evaluation of the solubility of tritium. In addition, it was seen that dissolution of tritium into Cu-Be alloy obeys the Sieverts' law from the pressure dependence, and the solubility of tritium in Cu-Be alloy was lower than that in pure copper. From the temperature dependence of solubility, the heat of solution of tritium was determined as 17 kJ/mol.