ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Q. Qi, X. F. Wang, L. Q. Shi, L. Zhang, B. Zhang, Y. F. Lu, A. Liu
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1483-1486
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12712
Articles are hosted by Taylor and Francis Online.
Helium atoms are introduced into Cu films at room temperature by direct current (DC) magnetron sputtering in a He/Ar mixed atmosphere. The doped helium atoms are distributed evenly in the film and the content can be easily controlled by changing the process parameters. The structure of Cu films with trapped helium was investigated by X-ray diffraction (XRD) technology. With increasing helium irradiation flux, the lattice spacing and width of diffraction peaks increased due to helium effects, corresponding to the increase of finite and infinite size defects in the film. The shape of thermal desorption spectrum (TDS) and the number of peaks strongly depended on the amount of helium introduced into Cu. With increase of helium content, helium release temperature decreases. At the same amount of helium, the peak temperature became higher with increase of heating rate and from this we can obtain a picture which could calculate the activation energy of helium desorption.