ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Y. Yamauchi, Y. Kimura, Y. Kosaka, Y. Nobuta, T. Hino, K. Nishimura, Y. Ueda
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1475-1478
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12710
Articles are hosted by Taylor and Francis Online.
Hydrogen isotope retention and desorption behaviors in tungsten during glow plasma exposures using hydrogen isotope or inert gas were investigated. The rapid pressure drop of D2 and the simultaneous pressure rises of HD and H2 were observed during deuterium discharge. The net amount of retained deuterium was several times larger than that of stainless steel. The desorption of HD or H2 was several times smaller than that of stainless steel. Compared with stainless steel, the amount of desorbed deuterium during subsequent inert gas discharge was several times smaller.