ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Yuka Togashi, Masanori Hara
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1471-1474
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12709
Articles are hosted by Taylor and Francis Online.
To understand the water vapor transport through a polypropylene film at near ambient temperature, water vapor permeation and sorption measurements were carried out using tritiated water as tracer. The activation energy and frequency factor of the permeability were found to be 11 kJ/mol and 1.5 x 10-10 cm3(STP) cm cm-2 s-1 Pa-1, respectively. The corresponding values of the solubility were determined to be -30 kJ/mol and 2.9 x 10-10 cm3(STP) cm-3 Pa-1. Because the permeation can be described by a one-dimensional diffusion model, the diffusion coefficient was evaluated from the quotient of permeability and solubility. The activation energy of water diffusion through polypropylene was calculated to be 41 kJ/mol.