ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Bando, K. Ohya, K. Inai
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1467-1470
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12708
Articles are hosted by Taylor and Francis Online.
In order to simulate carbon deposition profile in the divertor of ITER, long-distance transport in the scrape-off-layer and divertor plasma of carbon and hydrocarbons eroded from the divertor target plates are modeled. Physically eroded carbons dominate a sharp profile on the outer target plate, whereas at the inner target plate, a very small redeposition is observed. Chemically eroded hydrocarbons produce a redeposition on the dome area as well as both inner and outer target plates. Assuming tritium content in the redeposited layers, tritium co-deposition profile on the inner and outer target plates and dome is estimated, which allows us to predict the long-term tritium retention in the divertor of ITER.