ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
T. Ikeda, T. Otsuka, T. Tanabe
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1463-1466
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12707
Articles are hosted by Taylor and Francis Online.
Applying a tritium tracer technique, we have investigated hydrogen plasma driven permeation (PDP) through tungsten (W) near room temperature. The technique was confirmed to give reliable data on diffusion and permeation coefficients of pure W for gas driven permeation (GDP), and then it was applied to observe PDP in W near room temperature. It was found that PDP in earlier phase was controlled by diffusion giving reliable diffusion coefficients. Taking literature data at higher temperatures and present ones near room temperature determined from PDP into account, we have proposed new diffusion coefficientsDUpper limit = (3.8±0.4)x10-7 exp ((-39.8±1.5) (kJ/mol)/RT), m2s-1. (1)The activation energy for permeation determined by PDP was similar to that by GDP. The extrapolation of the present data to higher temperature agreed well with Frauenfelder's data, suggesting the activation energy of around 65 kJ/mol for permeation is quite reasonable. However prolonged measurements resulted in significant reduction of PDP. The cause of the reduction was attributed to the increase of reemission owing to surface cleaning and/or roughening by incidence of energetic hydrogen.