ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
T. Ikeda, T. Otsuka, T. Tanabe
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1463-1466
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12707
Articles are hosted by Taylor and Francis Online.
Applying a tritium tracer technique, we have investigated hydrogen plasma driven permeation (PDP) through tungsten (W) near room temperature. The technique was confirmed to give reliable data on diffusion and permeation coefficients of pure W for gas driven permeation (GDP), and then it was applied to observe PDP in W near room temperature. It was found that PDP in earlier phase was controlled by diffusion giving reliable diffusion coefficients. Taking literature data at higher temperatures and present ones near room temperature determined from PDP into account, we have proposed new diffusion coefficientsDUpper limit = (3.8±0.4)x10-7 exp ((-39.8±1.5) (kJ/mol)/RT), m2s-1. (1)The activation energy for permeation determined by PDP was similar to that by GDP. The extrapolation of the present data to higher temperature agreed well with Frauenfelder's data, suggesting the activation energy of around 65 kJ/mol for permeation is quite reasonable. However prolonged measurements resulted in significant reduction of PDP. The cause of the reduction was attributed to the increase of reemission owing to surface cleaning and/or roughening by incidence of energetic hydrogen.