ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
M. Saito, Y. Torikai, R.-D. Penzhorn, K. Akaishi, M. Matsuyama
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1459-1462
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12706
Articles are hosted by Taylor and Francis Online.
Uptake, distribution, and release behavior of tritium in Ni was investigated by chemical etching and thermal release rate measurements. Liberated tritium was found to consist almost exclusively of tritiated water. The chronic release rate of tritium from Ni was significantly larger than that from type 316 stainless steel. Depth profiles in specimens that partially lost tritium due to its chronic release into vacuum, air or a stream of argon could be reproduced by a one-dimensional diffusion model using best fit diffusion coefficients. Values of the best-fit diffusion coefficients at 298 K were found to be independent from the ambient into which tritium was released. The average diffusion coefficient from all measurements at 298 K, i.e. (2.7 ± 1.3) × 10-10 [cm2/s] was in line with diffusion coefficients calculated from literature data at the same temperature. Hence, the diffusion model constitutes a useful tool for the prediction of tritium bulk depth profiles in Ni during chronic release (CR).