ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
M. Saito, Y. Torikai, R.-D. Penzhorn, K. Akaishi, M. Matsuyama
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1459-1462
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12706
Articles are hosted by Taylor and Francis Online.
Uptake, distribution, and release behavior of tritium in Ni was investigated by chemical etching and thermal release rate measurements. Liberated tritium was found to consist almost exclusively of tritiated water. The chronic release rate of tritium from Ni was significantly larger than that from type 316 stainless steel. Depth profiles in specimens that partially lost tritium due to its chronic release into vacuum, air or a stream of argon could be reproduced by a one-dimensional diffusion model using best fit diffusion coefficients. Values of the best-fit diffusion coefficients at 298 K were found to be independent from the ambient into which tritium was released. The average diffusion coefficient from all measurements at 298 K, i.e. (2.7 ± 1.3) × 10-10 [cm2/s] was in line with diffusion coefficients calculated from literature data at the same temperature. Hence, the diffusion model constitutes a useful tool for the prediction of tritium bulk depth profiles in Ni during chronic release (CR).