ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
M. Saito, Y. Torikai, R.-D. Penzhorn, K. Akaishi, M. Matsuyama
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1459-1462
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12706
Articles are hosted by Taylor and Francis Online.
Uptake, distribution, and release behavior of tritium in Ni was investigated by chemical etching and thermal release rate measurements. Liberated tritium was found to consist almost exclusively of tritiated water. The chronic release rate of tritium from Ni was significantly larger than that from type 316 stainless steel. Depth profiles in specimens that partially lost tritium due to its chronic release into vacuum, air or a stream of argon could be reproduced by a one-dimensional diffusion model using best fit diffusion coefficients. Values of the best-fit diffusion coefficients at 298 K were found to be independent from the ambient into which tritium was released. The average diffusion coefficient from all measurements at 298 K, i.e. (2.7 ± 1.3) × 10-10 [cm2/s] was in line with diffusion coefficients calculated from literature data at the same temperature. Hence, the diffusion model constitutes a useful tool for the prediction of tritium bulk depth profiles in Ni during chronic release (CR).