ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Oda et al.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1455-1458
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12705
Articles are hosted by Taylor and Francis Online.
The behavior of hydrogen isotopes implanted into tungsten containing vacancies was simulated using a Monte Carlo technique. The correlations between the distribution of implanted deuterium and fluence, trap density and trap distribution were evaluated. Throughout the present study, qualitatively understandable results were obtained. In order to improve the precision of the model and obtain quantitatively reliable results, it is necessary to deal with the following subjects: (1) how to balance long-time irradiation processes with a rapid diffusion process, (2) how to prevent unrealistic accumulation of hydrogen, and (3) how to model the release of hydrogen forcibly loaded into a region where hydrogen densely exist already.