ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
EnergySolutions awarded $84.6M in nuclear navy contracts
Utah-based EnergySolutions has announced it has been awarded two contracts worth a combined $84.6 million from the U.S. Navy to support waste management operations across multiple Naval Nuclear Propulsion Program sites. According to the company, the indefinite-delivery, indefinite-quantity contracts will enable the secure transportation, receipt, processing, recycling and reduction, and disposal of nuclear materials from key naval sites nationwide.
D. Nishijima, Y. Kikuchi, M. Nakatsuka, M. J. Baldwin, R. P. Doerner, M. Nagata, Y. Ueda
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1447-1450
Interaction with Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12703
Articles are hosted by Taylor and Francis Online.
Sequential exposures of W surfaces to steady-state and pulsed (~0.5 ms) plasmas have been performed in a linear divertor plasma simulator and a magnetized coaxial plasma gun to investigate effects of D blisters, nano-sized He bubbles, and He-induced W fuzz on surface cracking by pulsed plasma loads. Surface cracks appeared on samples containing D blisters or He bubbles following 10 shots at ~0.5 MJ/m2 per shot, while a mirror-polished sample with no pre-plasma exposure did not exhibit cracks after similar transient exposures. Note that the cracking is limited to the edge region for a sample with D blisters. This means that the energy density threshold for surface cracking is lowered by the existence of D blisters and, especially, He bubbles. On the other hand, it is found that fuzzy surfaces possess a good resistance to surface cracking, although arcing is prone to occur.