ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
BongJu Lee, David Hill, K. H. Im, L. Sevier, Jung-Hoon Han, Bastiaan J. Braams
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 110-123
Technical Paper | doi.org/10.13182/FST00-A127
Articles are hosted by Taylor and Francis Online.
The planned Korea Superconducting Tokamak Advanced Research (KSTAR) divertor has been designed to provide reliable power handling and particle control with enough shaping flexibility to accommodate a wide range of plasma operation. The physics basis for the current configuration of the KSTAR divertor through analyses of the heat flux at the target, particle control, and plasma-facing component is reported. A simple zero-dimensional model based on the power balance assumptions and two-dimensional codes is utilized to estimate the heat flux to the divertor plate. The limit for the peak heat flux on the divertor plate, 3.5 MW/m2, requires advanced operating modes such as the radiative divertor and radiative mantle, which are considered to overcome the weakness of a high-recycling divertor. A simple particle balance model could estimate the pumping rate with total leakage fraction assuming particle sources. A Monte Carlo neutral transport calculation determines the dimension of a gap between the center and outer divertor targets. It also determines the number and best position of the pumps, as well as the geometry for conductance. For the initial 20-s discharges, a bolted-tile carbon-fiber-composite design is relied upon for the upper and lower divertor targets. The design of the supporting structure for the divertors will allow for future modifications to accommodate thermal steady-state 300-s operation or to optimize divertor performance based on new understanding gained during initial tokamak operation.