ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. W. Kim, T. C. W. Wong, F. K. W. Tang, A. Reid
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1427-1430
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12699
Articles are hosted by Taylor and Francis Online.
For safe and efficient operation of the Darlington Nuclear Generating Station's Tritium Removal Facility (DTRF), it is necessary to track the amount of operational tritium inventory within the DTRF's process systems. Previous methodology that tracks operational tritium inventory is based on performing a tritium mass balance and does not provide an instantaneous way to determine inventory in the DTRF. The estimate of operational tritium inventory using this method is susceptible to increasing cumulative error of approximately ±2.6% per day as the DTRF continues to operate. Current methodology attempts to compensate for this cumulative error by assuming a constant value for operational tritium inventory whenever Mass 5 is detected by mass spectroscopy of tritium drawoff gas. However, this assumption is flawed and introduces significant error to the estimation of operational tritium inventory. A new method based on temperature of the cryogenic high tritium distillation (HTD) process is proposed which can track operational tritium inventory in a more instantaneous fashion and provides a result with a constant error of ±14% that does not increase over time.