ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. W. Kim, T. C. W. Wong, F. K. W. Tang, A. Reid
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1427-1430
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12699
Articles are hosted by Taylor and Francis Online.
For safe and efficient operation of the Darlington Nuclear Generating Station's Tritium Removal Facility (DTRF), it is necessary to track the amount of operational tritium inventory within the DTRF's process systems. Previous methodology that tracks operational tritium inventory is based on performing a tritium mass balance and does not provide an instantaneous way to determine inventory in the DTRF. The estimate of operational tritium inventory using this method is susceptible to increasing cumulative error of approximately ±2.6% per day as the DTRF continues to operate. Current methodology attempts to compensate for this cumulative error by assuming a constant value for operational tritium inventory whenever Mass 5 is detected by mass spectroscopy of tritium drawoff gas. However, this assumption is flawed and introduces significant error to the estimation of operational tritium inventory. A new method based on temperature of the cryogenic high tritium distillation (HTD) process is proposed which can track operational tritium inventory in a more instantaneous fashion and provides a result with a constant error of ±14% that does not increase over time.