ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Yasuhisa Oya, Takuji Oda, Satoru Tanaka, Kenji Okuno
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1423-1426
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12698
Articles are hosted by Taylor and Francis Online.
The tritium recovery technique at the steam generator in fast breeder reactor under the double pipe concept was studied by both of experiment and simulation. The permeation of tritium was lowered at ~1000ppm oxygen in Ar as a recovery gas. But tritium is easily converted to water form by adding 10ppm oxygen. To explain these experimental results and expand the tritium behavior at double pipe concept, DFT and Monte Carlo simulations were applied. The surface oxide layer mode was developed and stability of tritium was evaluated. It was found that most stable structure was formed in the oxide layer although tritium is unstable at the surface of oxide layer. Tritium permeation rate was almost the same even if the oxide layer was formed, but the tritium retention is enhanced by adding the oxide layer. To expand these results to tritium permeation and recovery model, numerical analysis was performed as a function of sweep rate, material thickness and thickness of surface oxide layer. It was found that control of sweep rate is one of key factors. But the design restriction, control of oxide layer thickness by flowing O2+Ar gas will be potential option for the recovery of tritium at steam generator.