ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
Yasuhisa Oya, Takuji Oda, Satoru Tanaka, Kenji Okuno
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1423-1426
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12698
Articles are hosted by Taylor and Francis Online.
The tritium recovery technique at the steam generator in fast breeder reactor under the double pipe concept was studied by both of experiment and simulation. The permeation of tritium was lowered at ~1000ppm oxygen in Ar as a recovery gas. But tritium is easily converted to water form by adding 10ppm oxygen. To explain these experimental results and expand the tritium behavior at double pipe concept, DFT and Monte Carlo simulations were applied. The surface oxide layer mode was developed and stability of tritium was evaluated. It was found that most stable structure was formed in the oxide layer although tritium is unstable at the surface of oxide layer. Tritium permeation rate was almost the same even if the oxide layer was formed, but the tritium retention is enhanced by adding the oxide layer. To expand these results to tritium permeation and recovery model, numerical analysis was performed as a function of sweep rate, material thickness and thickness of surface oxide layer. It was found that control of sweep rate is one of key factors. But the design restriction, control of oxide layer thickness by flowing O2+Ar gas will be potential option for the recovery of tritium at steam generator.