ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kazuhiro Kobayashi, Hirofumi Nakamura, Takumi Hayashi, Toshihiko Yamanishi
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1335-1338
Detritiation and Isotope Separation | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12676
Articles are hosted by Taylor and Francis Online.
Transport properties of tritiated water vapor (HTO) in the epoxy paint such as adsorption, desorption, diffusion and dissolution has been evaluated by investigating the HTO exposure and removal behavior from the epoxy paint in order to generate a data base on tritium behavior in tritium-confinement facilities such as the Hot Cell and the tritium plant building in ITER. Two types of experiments were carried out; one was the HTO exposure to the epoxy paint, and the other was the detritiation curves from the epoxy paint after the HTO exposure. Stainless steel vessel chambers with the epoxy painted inside surfaces were first exposed to an air flow containing HTO vapor (740 Bq/cm3) for 1 week, 2 weeks and 2 months. After these exposures, detritiation of these chambers with an air flow was carried out. It was found that the interaction between the surface of the epoxy paint and the HTO such as adsorption and desorption is reached the steady state under these conditions. Based on experimental detritiation curves, the transport properties were evaluated using the tritium transport analysis code, TMAP. The trapping effect is the strong bonds between the HTO and the epoxy such as the chemical bonds, which is represented by trapped HTO in this analysis. Although diffusivity and solubility of HTO in epoxy paints almost agreed with the previous investigations, trapping like effect should be considered to explain observed detritiation behavior.