ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
V. Y. Korolevych, S. B. Kim
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1288-1291
Environmental and Organically Bound Tritium | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12666
Articles are hosted by Taylor and Francis Online.
This study is devoted to the collection and robust analysis of 2008-2009 field data pertaining to airborne tritium transfer in potato and tomato plants subject to continuous releases. The study is a part of implementation and validation of tritium transfer model ported to Canadian LAnd Surface Scheme (CLASS), which has been recently extended towards plant phenomenology in Canadian Terrestrial Ecosystem Model (CTEM+CLASS v.2.7). The initial validation has been performed for ratios of organic to free-water tritium in plant tissues (OBT/HTO ratios) retrieved from the simple off-line tritium uptake and re-emission routine assessed against historical OBT/HTO ratio datasets. The observed underestimate of high OBT/HTO ratios in this simple model warrants deployment of CTEM+CLASS and makes it necessary to focus the next experimental validation effort at tritium re-emission phase. The concentration of HTO in the upper soil layer, in the different parts of vegetation and in the air has been assessed. The sampling was performed on weekly and hourly scales, in the latter case with emphasis on a night-time period. The process of uptake from atmosphere has been clarified using plants grown on the clean tarp-covered soil at Acid Rain Site of Chalk River Laboratories (CRL), which dumped the root uptake pathway. The processes of root uptake and re-emission from plant were clarified at the irrigated Perch Lake site of CRL. Auxiliary environmental drivers and site-specific data were collected according to format of inputs and parameterization of CTEM+CLASS.