ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
X. Lefebvre, K. Liger, M. Troulay, N. Ghirelli, C. Perrais
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1276-1279
Environmental and Organically Bound Tritium | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12663
Articles are hosted by Taylor and Francis Online.
The oxide mixture MnO2/Ag2O has been identified as one of the best materials to oxidize hydrogen under ambient temperature and atmospheric pressure conditions. Studies have been carried out within the scope of the mitigation of hydrogen risk in fusion reactors and the optimal composition of this mixture has been determined by Chaudron as MnO2/Ag2O 10% wt. Using Maruéjouls' experiments, a model, previously developed to explain the oxidation of hydrogen by copper oxide for helium purification purpose, has been adapted and its simulation capability tested. To achieve this point, an exploratory experiment with a thin MnO2/Ag2O bed has been carried out under low hydrogen initial concentration (130 Vppm) in order to simulate tritium degassing. Although a very good global agreement between the calculations and the experimental points, the model is unable to account for the behaviour of hydrogen breakthrough at the beginning of the experimentation. Thus, enhancements of this model are presented in this paper. Finally, Scanning Electron Microscopy (SEM) analyses confirm the coherence of some assumptions used to solve the model equations.