ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
H. Kakiuchi et al.
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1256-1259
Environmental and Organically Bound Tritium | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12658
Articles are hosted by Taylor and Francis Online.
We developed an analytical method for organically bound 3H (OBT) in biological environmental samples by using noble gas mass spectrometry of 3He produced from 3H. Three environmental samples with background level OBT concentrations were analyzed, and the results agreed well with those by the conventional liquid scintillation counting of electrolyzed combustion water of the samples. This showed that the method is practical and effective.We also developed an analytical method for non-exchangeable OBT as a combination of pre-treatment of dried samples with free water 3H and our newly developed analytical method for OBT. The repeated analysis of a grass sample with moderate 3H concentration had smaller variance of results for non-exchangeable OBT than for OBT. The sum of non-exchangeable and exchangeable OBT agreed well with OBT measured in the samples. The developed method was successfully applied to terrestrial and marine environmental samples with background 3H levels.