ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Kaneko, S. Kobayashi, Y. Suzuki, T. Mizuuchi, K. Nagasaki, H. Okada, Y. Nakamura, K. Hnatani, S. Murakami, K. Kondo, F. Sano
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 428-433
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1265
Articles are hosted by Taylor and Francis Online.
In the Heliotron J device, the configuration effects on the particle confinement are studied experimentally with tangentially injected neutral beams and a charge-exchange (CX) neutral particle analyzer (NPA) system. The hydrogen neutral beam are co-injected into deuterium plasmas heated by electron cyclotron heating. The detected CX flux increases, as the CX-NPA is oriented to the beam-facing direction. The behavior of the CX flux is studied by changing one of the Fourier components in the magnetic field, the bumpiness component, B04/B00, from 0.01 to 0.15. Here, Bmn is the Fourier component of the magnetic field strength in the Boozer coordinates where the subscript m/n denotes poloidal/toroidal mode numbers. The dependence of the CX flux on the configurations and pitch angle, which represents the change of the loss cone shape predicted by noncollisional orbit calculation, is observed. The bulk deuterium temperature slightly increases with increasing the bumpiness component. The decay time of the CX flux just after the neutral beam is turned off becomes longer with increasing the bumpiness component. By comparison of observation and calculation of the Fokker-Planck equation, the loss time of fast ions in the high-bumpiness configuration is longer than that of the standard configuration in Heliotron J.