ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Yu. Balashov, A. Golubev, V. Golubeva, S. Mavrin, U. Pereligina
Fusion Science and Technology | Volume 60 | Number 4 | November 2011 | Pages 1215-1219
Environmental and Organically Bound Tritium | Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2) | doi.org/10.13182/FST11-A12649
Articles are hosted by Taylor and Francis Online.
The processes of tritium uptake, losses, transformation and organically bound tritium (OBT) build-up in crops such as potatoes, tomatoes, lettuce and wheat were studied in a set of experiments on crop' short-term exposure to tritiated water (HTO) in a greenhouse. The crops were exposed at the stage of linear growth between blossoming and ripening. The results of experiments were used to develop a model of OBT build-up in crop's storage organs.The model allows estimate tritium uptake, losses in crop's leaves as well as its transformation in OBT and transport to storage organs of plants. The model parameters were obtained from the measured data for each crop's type by using regression analysis. The model was validated against experiments. The model can be used to assess OBT activity in storage organs of crops upon short-term exposure in the atmosphere contaminated by HTO.