ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
F. Castejón, J. M. Reynolds, J. M. Fontdecaba, R. Balbín, J. Guasp, D. López-Bruna, I. Campos, L. A. Fernández, D. Fernández-Fraile, V. Martín-Mayor, A. Tarancón
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 412-418
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1263
Articles are hosted by Taylor and Francis Online.
It was observed previously that the ion temperature profile of low-density electron cyclotron resonance-heated TJ-II plasmas is almost flat and that energetic ions are present well outside the last closed magnetic surface. The heat diffusivity obtained for such ion temperature profiles is very high, and therefore, transport cannot be described by Fick's law. In this work, ion trajectories with different pitches and starting points have been calculated for the relevant magnetic configuration. It is found that a feasible explanation for such a flat mean energy profile is that ion orbits are wide enough to communicate distant parts of the plasma radius, thus giving an effective flat ion temperature profile, for these low-density (<1019-m-3) plasmas. The distribution function is also obtained without considering collisions; thus, non-Maxwellian features are found. The final particle density shows inhomogeneities on a magnetic surface.