ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Toshiyuki Umata, Toshiyuki Norimura
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1193-1196
Biology | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12629
Articles are hosted by Taylor and Francis Online.
A large amount of tritium is required as the fuel source for the nuclear fusion reaction. As a result, during the routine operation or in case of accidents, one of the major issues is the assessment of the biological effects of tritium released from nuclear fusion power plants. In this study, the mutagenic effects of tritiated water (HTO) were compared to those of 137Cs irradiation on spleen T lymphocytes of wild (p53+/+) mice and p53-deficient (p53-/-) mice. In both mice, TCR variant fractions induced by HTO was higher than those by simulation-irradiation of 137Cs rays. When compared on the basis of the induced TCR variant fractions in p53-/- mice at 3 Gy, tritium rays appear to be 1.7 times more mutagenic than rays. On the other hand, in p53+/+ mice, HTO injection increased induced TCR variant fractions significantly, whereas simulation-irradiation did not increase those at all. In order to elucidate the reason responsible for this difference in p53+/+ mice, we investigated the apoptotic ability of spleen T lymphocytes. As a result, the apoptotic ability of spleen T lymphocytes from p53+/+ mice exposed to HTO was reduced significantly compared to that from p53+/+ mice not exposed.