ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Melintescu, D. Galeriu
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1179-1182
Biology | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12625
Articles are hosted by Taylor and Francis Online.
The continuous efforts dedicated to increase the predictive power of risk assessment for the large tritium releases imply models based on process level analysis. Tritium transfer from atmosphere to plants and the subsequent conversion into organically bound tritium strongly depend on the plant characteristics, seasons, and meteorological conditions, which have a large variability. This paper presents an inter-comparison of different models for canopy resistance and photosynthesis based on knowledge from plant physiology, agro meteorology, crop science, and atmospheric physics. The authors use Jacobs-Calvet-Ronda approach to model the canopy resistance combined with photosynthesis model and the data base taken from WOFOST crop growth model. The same photosynthesis model is used to assess the organically bound tritium production during the daytime and night time.