ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
N. Nunomura, S. Sunada, K. Watanabe
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1155-1158
Blanket and Breeder Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12620
Articles are hosted by Taylor and Francis Online.
Adsorption of H2O on the -Al2O3 (0001) surface was studied by means of a first-principles calculation based on density functional theory (DFT). We also investigated the behavior of the isotope exchange by substituting a protium atom with deuterium or tritium. The oxygen atom of H2O adsorbs on the Al atom of the outermost surface layer, the entire water molecule is slanted at the direction of a hollow site, and a molecular plane is nearly parallel to the surface. The adsorbed states are mostly due to coupling of lone-pair electrons of H2O with the empty p orbitals of the Al atom of surface. The behavior of dissociation for H2O is clarified from molecular dynamics simulations, indicating that the second neighbor oxygen atom is more preferable adsorption site for dissociation than the nearest neighbor oxygen atom on the surface.