ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Takashi Shimozuma, Shin Kubo, Yasuo Yoshimura, Hiroe Igami, Kazunobu Nagasaki, Takashi Notake, Sigeru Inagaki, Satoshi Ito, Sakuji Kobayashi, Yoshinori Mizuno, Yasuyuki Takita, Kenji Saito, Tetsuo Seki, Ryuhei Kumazawa, Tetsuo Watari, Takashi Mutoh, LHD Experimental Group
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 403-411
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1262
Articles are hosted by Taylor and Francis Online.
The electron cyclotron resonance heating (ECH) system in the Large Helical Device consists of nine gyrotrons: two that are 82.7 GHz, 0.45 MW, and 2 s; two that are 84 GHz, 0.8 MW, and 3 s; one that is 84 GHz, 0.2 MW, and 1000 s; and four that are 168 GHz, 0.5 MW, and 1 s. ECH and electron cyclotron current drive (ECCD) experiments using this system have been conducted not only for plasma heating and current drive experiments but also for transport and power deposition studies with power modulation. The configuration of the recent ECH system including gyrotrons, high-voltage power supplies, and the transmission system is overviewed. The outstanding progress on the ECH/ECCD experimental results is described in detail, which includes an electron transport study in the plasma with an electron internal transport barrier, electron Bernstein wave heating through the mode conversion process, preliminary current drive experiments, and a steady-state plasma sustainment >1 h by only ECH.