ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
H. Yamasaki, K. Kashimura, T. Kanazawa, K. Katayama, N. Yamashita, S. Fukada, M. Nishikawa
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1151-1154
Blanket and Breeder Materials | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12619
Articles are hosted by Taylor and Francis Online.
It is observed that a fair amount of physical and chemical adsorbed water is released from solid breeder materials by introduction of dry N2 gas and that not a little amount of water is also continuously produced by the water formation reaction when the purge gas with hydrogen is applied. It is reported by present authors that the water released to the purge gas from solid breeder materials affects the tritium release behavior. The capacity and desorption rate of chemical adsorbed water, and the capacity and rate of water formation reaction for Li4SiO4, which has been supplied from FzK, are quantified in this study. It is found that the overall reaction rate of water formation on Li4SiO4 is larger than the rate observed for other solid breeder materials. Therefore, most hydrogen added to the blanket purge gas changes to water so far as the water formation capacity of Li4SiO4 remains. It is also found that water formation capacity of Li4SiO4 is almost the same as that of Li2TiO3. Tritium release behavior from Li4SiO4 and Li2TiO3 packed in the blanket are compared in this paper using the Kyushu University model and properties obtained in this study.