ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
X. M. Yuan, H. G. Yang, W. W. Zhao, Q. Zhan, Y. Hu, TMT Team
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1065-1068
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12600
Articles are hosted by Taylor and Francis Online.
In a fusion blanket design, ceramic coating such as Al2O3, Er2O3, Y2O3, TiC, TiN and TiC/TiN etc., has been considered as a tritium permeation barrier (TPB) on structural materials (e.g. RAFMs, 316L) by many countries in the past 20 years. The Al2O3 film prepared by in-situ oxidation of the iron aluminide layer is considered one of the most attractive because of the slow-growing steady protective oxide scale and its excellent self-healing ability. In order to obtain a transition aluminide layer with a certain aluminum content and thickness on two kinds of substrates such as the Reduced Activation Ferritic/Martensitic (RAFM) and 316L stainless steel, wide research efforts have been made on the effect of different pack chemistry, temperature and time on the properties and thickness of the aluminizing layers. The results indicated that a dense and uniform coating with a thickness about 20m was formed on CLAM (a Chinese RAFM steel) and 316L substrates for the pack material with low Al content (about 32wt.%). This aluminide coating had a surface aluminum content about 40-50at.% and was mainly consisted of ductile FeAl phase. For the pack material with high Al content (about 50wt.%), the thickness and the surface aluminum content of the aluminizing coating had great increases and there were mainly brittle Fe2Al5 phase. Especially some cracks were observed across this coating on CLAM substrate due to the mismatch in coefficient of thermal expansion (CTE) between the coating and substrate.