ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Asad Majid
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 103-109
Technical Paper | doi.org/10.13182/FST00-A126
Articles are hosted by Taylor and Francis Online.
Heat transfer to liquid lithium in the presence of a transverse magnetic field and a gravity field was analyzed in a square cross-section duct. The duct had conducting vanadium walls. Magnetohydrodynamic equations in three dimensions in the Cartesian coordinate system were solved. First, the Nusselt number was calculated with no magnetic field and a gravity field. Second, the Nusselt number was calculated for the case of a transverse magnetic field acting on the fluid. Third, the Nusselt number was calculated for the case of a transverse magnetic field and a gravity field acting on the fluid. Only one face of the channel was heated. It was found that the Nusselt number is not sensitive to application of a gravity field and is sensitive to application of a transverse magnetic field and it decreases when a transverse magnetic field is applied. It is observed that when the intensity of the transverse magnetic field reaches 0.11 T, further reduction in the value of the Nusselt number almost stops.