ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
James E. Fair, Walter T. Shmayda
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1045-1048
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-1045
Articles are hosted by Taylor and Francis Online.
A model has been developed to describe the observed release rate of tritium from a research-scale laser inertial confinement fusion chamber during humid air purge cycles. The relative roles of successive rate limiting processes active during the purge cleaning process are assessed and incorporated into a system-level description that includes the coupled effects of convection, surface reaction, and sub-surface diffusion on tritium removal rate. The computational effort required for solution of the model equations is modest owing to the dominant roles of surface reaction and bulk diffusion, both of which may be adequately treated using low-dimension approximations. The resulting formalism is sufficiently general to be applied to a wide range of systems, materials, and process conditions involving water-gas interaction with tritium bearing surfaces.