ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
James E. Fair, Walter T. Shmayda
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1045-1048
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-1045
Articles are hosted by Taylor and Francis Online.
A model has been developed to describe the observed release rate of tritium from a research-scale laser inertial confinement fusion chamber during humid air purge cycles. The relative roles of successive rate limiting processes active during the purge cleaning process are assessed and incorporated into a system-level description that includes the coupled effects of convection, surface reaction, and sub-surface diffusion on tritium removal rate. The computational effort required for solution of the model equations is modest owing to the dominant roles of surface reaction and bulk diffusion, both of which may be adequately treated using low-dimension approximations. The resulting formalism is sufficiently general to be applied to a wide range of systems, materials, and process conditions involving water-gas interaction with tritium bearing surfaces.