ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kazuhiro Kobayashi, Takumi Hayashi, Toshihiko Yamanishi
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1041-1044
Contamination and Waste | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12594
Articles are hosted by Taylor and Francis Online.
A fusion reactor requires high levels of safety and public acceptability, so safeconfinement of tritium is one of the key issues. Tritium must be well controlled with no excessive release to environment and no excessive workers exposure. Especially, the hot cell and tritium facility of ITER will use various construction materials such as the concrete and the organic materials. Since the concrete materials will be contaminated by tritium compared with the metal materials such as SS, it is very important to study the tritium behavior on the materials from the viewpoint of the excessive exposure protection to workers. Therefore, in order to understand the tritium behavior on the concrete materials, the sorption and desorption experiment was carried out as a function of the exposure time and temperature of water in the desorption experiment. The used samples were cement paste, mortar and concrete. These samples were exposed into 740 ~ 1110 Bq/cm3 of tritiated water vapor at room temperature. The exposed time was from a day to several weeks. The exposed samples for a certain period were soaked into water at 277 K, 298 K and 343 K, and then the water was periodically measured by Liquid Scintillation Counter (LSC) and the amount of tritium sorbed on the concrete materials were evaluated. The amount of the tritium sorbed in the concrete materials reached equilibrium less than 2 months. In the desorption behavior from concrete materials to water at 277K, 298K and 343K, the tritium sorbed in the concrete materials was desorbed about 99 % for 2 days at 343 K of water. However, the tritium desorption from concrete materials was sufficiently detected though 3 months passed. In addition, the tritium profile on the surface concrete materials was measured by a tritium imaging plate.