ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K.-M. Song et al.
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1010-1013
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12587
Articles are hosted by Taylor and Francis Online.
A calorimeter was integrated in KEPTL (KEPCO Research Institute Tritium Laboratory) and the various performance tests were performed. The inventory of tritium transport vessels delivered to the ITER tritium plant will be measured by calorimetry. For calorimetry measurement the tritium transport vessel will be inserted in an aluminum secondary container for the tritium leak prevention. The heat capacity and geometry of measuring objects, however, can affect the performance of the calorimeter such as measuring time, sensitivity, etc. In this study, the effect of the heat capacity of the tritium vessel on the performance of the twin cell calorimeter is studied by using JEC and aluminum container which are dummy vessels simulating the tritium decay heat with electric heaters. The average sensitivity in the test with aluminum containers is measured to be 96 V/mW which is similar that with JEC so it does not depend directly on the heat capacity of the tritium vessel. The aluminum container, however, makes the measuring time increase and the heat flow signal could be unstable in the range of low tritium and high heat capacity like a waste vessel after tritium loading out.