ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Discovering, Making, and Testing New Materials: SRNL’s Center For Hierarchical Waste Form Materials
Savannah River National Laboratory researchers are building on the laboratory’s legacy of using cutting-edge science to effectively immobilize nuclear waste in innovative ways. As part of the Center for Hierarchical Waste Form Materials, SRNL is leveraging its depth of experience in radiological waste management to explore new frontiers in the industry.
H. J. Ahn, J. Park, K. Song, B-C Na, S. Rosanvallon, D. Stout
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 1006-1009
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12586
Articles are hosted by Taylor and Francis Online.
ITER is trying to develop destructive and non-destructive methods of tritium measurement for discarded radwaste components. The ITER Type B(medium activity with long life) metallic radwastes that need tritium measurement are mainly Divertor Cassette Body, Blanket Modules, Test Blanket Module Port Plug, Torus Cryopump, etc. It has been known that 107 Bq/g of tritium is distributed within 1 mm depth from the surface of the metallic radwastes. The metallic radwastes generated from maintenance period of ITER facility will be transferred to the Hot Cell Facility (HCF) for treatment including cutting, tritium removal and pre-packaging, followed by being shipped to the disposal facility after interim storage at ITER site.In this study, the radiochemical analysis methods of tritium measurement for ITER type B metallic radwastes were reviewed. Especially, two experimental methods, chemical acid leaching method (CALM) and heating method (HM,) were compared with each others to suggest the most suitable method for tritium measurement. The recovery yield of tritium standards for CALM and HM showed excellent results of 98 and 90 %, respectively. Since HM requires post treatment of extracted tritium species due to impurities, as shown in the analysis of sample from Nuclear Power Plant, CALM was considered more efficient method than HM for tritium analysis of Type B metallic radwastes.