ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Yuji Hatano, Masanori Hara, Hiroko Ohuchi, Hirofumi Nakamura, Takumi Hayashi, Toshihiko Yamanishi
Fusion Science and Technology | Volume 60 | Number 3 | October 2011 | Pages 982-985
Measurement, Monitoring, and Accountancy | Proceedings of the Ninth International Conference on Tritium Science and Technology | doi.org/10.13182/FST11-A12580
Articles are hosted by Taylor and Francis Online.
Concentration of tritium in highly tritiated water was measured by exposing imaging plates (IPs) to water vapor. Tritium penetrated into photostimulated luminescence (PSL) phosphor through polyethylene terephthalate protection layer, and well detectable signal of PSL was induced at tritium concentration of 16 kBq cm-3. In addition, tritium was reversibly desorbed by keeping IPs in air, and signal from IPs returned to background level. In other words, IPs exposed to tritiated water vapor were reusable; tritium concentration in water could be measured without any waste. In addition, no handling of tritiated water such as sampling and dilution was necessary.