ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
T. Sunn Pedersen, J. P. Kremer, R. G. Lefrancois, Q. Marksteiner, N. Pomphrey, W. Reiersen, F. Dahlgren, Xabier Sarasola
Fusion Science and Technology | Volume 50 | Number 3 | October 2006 | Pages 372-381
Technical Paper | Stellarators | doi.org/10.13182/FST06-A1258
Articles are hosted by Taylor and Francis Online.
We report on the results from initial testing and operation of the Columbia Nonneutral Torus, a new stellarator experiment constructed at Columbia University to study the confinement of nonneutral plasmas, electron-positron plasmas, and stellarator confinement in the presence of strong electrostatic fields. A new algorithm for automatic identification of good magnetic surfaces, island chains, and stochastic regions in Poincaré maps is also described. We present some of the details of the design of the interlocked in-vessel coils and the vacuum system and report on initial vacuum performance. Magnetic surface mapping and visualization results are also presented, confirming the existence of ultralow aspect ratio magnetic surfaces with excellent quality and good agreement with numerical calculations.